25 research outputs found

    Time-Resolved Optical and Thermal Analyses of High-Power Laser Diode Arrays

    Get PDF
    Time-resolved optical and thermal analyses of laser diode arrays reveals temperature induced chirp and the presence of anomalous hot spots

    Performance Considerations for the SIMPL Single Photon, Polarimetric, Two-Color Laser Altimeter as Applied to Measurements of Forest Canopy Structure and Composition

    Get PDF
    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is a multi-beam, micropulse airborne laser altimeter that acquires active and passive polarimetric optical remote sensing measurements at visible and near-infrared wavelengths. SIMPL was developed to demonstrate advanced measurement approaches of potential benefit for improved, more efficient spaceflight laser altimeter missions. SIMPL data have been acquired for wide diversity of forest types in the summers of 2010 and 2011 in order to assess the potential of its novel capabilities for characterization of vegetation structure and composition. On each of its four beams SIMPL provides highly-resolved measurements of forest canopy structure by detecting single-photons with 15 cm ranging precision using a narrow-beam system operating at a laser repetition rate of 11 kHz. Associated with that ranging data SIMPL provides eight amplitude parameters per beam unlike the single amplitude provided by typical laser altimeters. Those eight parameters are received energy that is parallel and perpendicular to that of the plane-polarized transmit pulse at 532 nm (green) and 1064 nm (near IR), for both the active laser backscatter retro-reflectance and the passive solar bi-directional reflectance. This poster presentation will cover the instrument architecture and highlight the performance of the SIMPL instrument with examples taken from measurements for several sites with distinct canopy structures and compositions. Specific performance areas such as probability of detection, after pulsing, and dead time, will be highlighted and addressed, along with examples of their impact on the measurements and how they limit the ability to accurately model and recover the canopy properties. To assess the sensitivity of SIMPL's measurements to canopy properties an instrument model has been implemented in the FLIGHT radiative transfer code, based on Monte Carlo simulation of photon transport. SIMPL data collected in 2010 over the Smithsonian Environmental Research Center, MD are currently being modelled and compared to other remote sensing and in situ data sets. Results on the adaptation of FLIGHT to model micropulse, single'photon ranging measurements are presented elsewhere at this conference. NASA's ICESat-2 spaceflight mission, scheduled for launch in 2016, will utilize a multi-beam, micropulse, single-photon ranging measurement approach (although non-polarimetric and only at 532 nm). Insights gained from the analysis and modelling of SIMPL data will help guide preparations for that mission, including development of calibration/validation plans and algorithms for the estimation of forest biophysical parameters

    Characterization of High-power Quasi-cw Laser Diode Arrays

    Get PDF
    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented

    Three Year Aging of Prototype Flight Laser at 10 Khz and 1 Ns Pulses with External Frequency Doubler for the Icesat-2 Mission

    Get PDF
    We present the results of three year life-aging of a specially designed prototype flight source laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and external frequency doubler. The Fibertek-designed, slightly pressurized air, enclosed-container source laser operated at 1064 nm in active Q-switching mode. The external frequency doubler was set in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm discreetly. The external frequency doubler consisted of a Lithium triborate, LiB3O5, crystal operated at non-critical phase-matching. Due to 1064 nm diagnostic needs, the amount of fundamental frequency power available for doubling was 13.7W. The power generated at 532 nm was between 8.5W and 10W, depending on the level of stress and degradation. The life-aging consisted of double stress-step operation for doubler crystal, at 0.35 J/cm2 for almost 1 year, corresponding to normal conditions, and then at 0.93 J/cm2 for the rest of the experiment, corresponding to accelerated testing. We observed no degradation at the first step and linear degradation at the second step. The linear degradation at the second stress-step was related to doubler crystal output surface changes and linked to laser-assisted contamination. We discuss degradation model and estimate the expected lifetime for the flight laser at 532 nm. This work was done within the laser testing for NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime

    European Atlas of Natural Radiation

    Get PDF
    Natural ionizing radiation is considered as the largest contributor to the collective effective dose received by the world population. The human population is continuously exposed to ionizing radiation from several natural sources that can be classified into two broad categories: high-energy cosmic rays incident on the Earth’s atmosphere and releasing secondary radiation (cosmic contribution); and radioactive nuclides generated during the formation of the Earth and still present in the Earth’s crust (terrestrial contribution). Terrestrial radioactivity is mostly produced by the uranium and thorium radioactive families together with potassium. In most circumstances, radon, a noble gas produced in the radioactive decay of uranium, is the most important contributor to the total dose.This Atlas aims to present the current state of knowledge of natural radioactivity, by giving general background information, and describing its various sources. This reference material is complemented by a collection of maps of Europe displaying the levels of natural radioactivity caused by different sources. It is a compilation of contributions and reviews received from more than 80 experts in their field: they come from universities, research centres, national and European authorities and international organizations.This Atlas provides reference material and makes harmonized datasets available to the scientific community and national competent authorities. In parallel, this Atlas may serve as a tool for the public to: • familiarize itself with natural radioactivity;• be informed about the levels of natural radioactivity caused by different sources;• have a more balanced view of the annual dose received by the world population, to which natural radioactivity is the largest contributor;• and make direct comparisons between doses from natural sources of ionizing radiation and those from man-made (artificial) ones, hence to better understand the latter.Additional information at: https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiatio
    corecore